COMMON ENTRANCE EXAMINATION AT 11+

MATHEMATICS

Specimen Paper

(for first examination in Autumn 2016)

Please read this information before the examination starts.

- This examination is 60 minutes long.
- Please try all the questions.
- Write your answers on the dotted lines.
- All working should be written on the paper.
- Tracing paper may be used.
- Calculators are not allowed.
- Fraction answers should be given in their simplest form.
1. Write down the answers to these questions.
 (You may work them out in your head.)

 (i) $48 + 35$

 Answer: (1)

 (ii) $613 - 123$

 Answer: (1)

 (iii) $28 \div 4$

 Answer: (1)

 (iv) 2^3

 Answer: (1)

 (v) twenty-five percent of eighty

 Answer: (1)

 (vi) 6.3×100

 Answer: (1)

 (vii) $398 + 297$

 Answer: (1)

 (viii) 27×5

 Answer: (1)
2. (a) Write down all the prime numbers between 10 and 20

Answer: (2)

(b) Write down the first three multiples of 12

Answer: (1)

(c) Write down all the factors of 16

Answer: (2)

3. A box of 7 grapefruit costs £3.29

(i) What is the cost of one grapefruit? Give your answer in pence.

Answer: p (2)

Patrick buys 2 boxes of grapefruit and pays with a £20 note.

(ii) How much change should he receive?

Answer: £ (2)
4. These thermometers show the temperatures inside and outside a window at 10 a.m. one winter's day.

(i) How many degrees warmer was it inside than outside the window?

Answer: °C (1)

At 10 p.m., the temperature outside had fallen by 2 °C.

(ii) What was the temperature outside the window at 10 p.m.?

Answer: °C (1)

5. Fill in the boxes to make the following statements true.

(i) $8 + 4 \times \boxed{} = 36$

Answer: (1)

(ii) $5 \times (4 - \boxed{}) = 15$

Answer: (1)

(iii) $10 - (5 + \boxed{}) = -3$

Answer: (1)
6. Shape P is drawn on the centimetre-square grid below.

(i) Reflect shape P in the dashed line.
 Label the new shape Q.
 \hspace{2cm} (2)

(ii) Translate shape P 3 units right and 4 units up.
 Label the new shape R. \hspace{2cm} (2)

(iii) Work out the area of shape P.
 Give your answer with the correct units.
 Answer: \hspace{2cm} (2)

7. (a) Write down the value of these Roman numerals.
 (i) V
 Answer: \hspace{2cm} (1)

 (ii) M
 Answer: \hspace{2cm} (1)

(b) Which year is written in Roman numerals as MMXVII?
 Answer: \hspace{2cm} (1)
8. (a) Work out the following.

(i) 3579 + 1824

Answer: (2)

(ii) 3579 − 1824

Answer: (2)

(iii) 264 × 27

Answer: (3)

(iv) 1595 ÷ 11

Answer: (2)

(b) Round 2089 to the nearest 100

Answer: (1)
9. Calculate the mean of these numbers.

\[9 \quad 14 \quad 7 \quad 17 \quad 8 \]

Answer: (2)

10. Here is a list of fractions:

\[\frac{3}{4} \quad \frac{5}{8} \quad \frac{15}{11} \quad \frac{8}{12} \quad \frac{4}{5} \]

Choose from the list

(i) a fraction which is greater than 1

Answer: (1)

(ii) a fraction equivalent to 80%

Answer: (1)

(iii) a fraction equivalent to 0.75

Answer: (1)

(iv) a fraction which is not in its simplest form

Answer: (1)

11. A sunflower is 150 cm tall.

How tall will it be if its height increases by 10%?

Answer: cm (2)
12. Here are 5 number cards:

The cards can be put together to form numbers.
For example, the smallest number which could be made using 4 of the cards is:

3 5 6 7

(i) Using all 5 cards
(a) what is the largest possible even number?

Answer: (1)

(b) what is the number which is closest to 80000?

Answer: (1)

(ii) Use exactly 2 of the cards to make the smallest possible prime number.

Answer: (1)

(iii) Arrange any 4 of the cards to show a sum below which will give the smallest possible answer.

Answer: (1)
13. Put these distances in order from smallest to largest.

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>27.8 km</td>
<td>2.087 km</td>
<td>2778 m</td>
<td>2.708 km</td>
</tr>
</tbody>
</table>

Answer: .., .., .., .. (3)

smallest

largest

14. (i) Draw accurately triangle ABC where $AB = 5.5$ cm, angle $A = 45^\circ$ and angle $B = 90^\circ$

(Point A is already drawn for you.)

(ii) Measure and write down the length of side BC.

Answer: .. cm (1)

(iii) equilateral isosceles scalene right-angled

Circle any appropriate words from the box above to describe triangle ABC.

Give reasons for your answer.

...

.. (2)
15. (i) Two identical rectangles are divided into 15 equal squares.

(a) Shade $\frac{3}{5}$ of this rectangle:

```
  1  2  3  4  5
```

(b) Shade $\frac{2}{3}$ of this rectangle:

```
  1  2  3  4  5
```

(c) Which is larger: $\frac{3}{5}$ or $\frac{2}{3}$.

Give a reason for your answer.

Answer: because ..

..

.. (2)

(ii) Arrange these fractions in order from smallest to largest.

\[
\frac{1}{3}, \quad \frac{2}{3}, \quad \frac{4}{5}, \quad \frac{13}{15}, \quad \frac{3}{5}
\]

Answer:,,,, (2)
16. Work out
 (i) \(\frac{2}{3} - \frac{1}{6} \)

Answer: (2)

 (ii) \(\frac{2}{5} \times 3 \)

Write your answer as a mixed number.
(You may use the diagrams to help you.)

Answer: (2)

17. In a box of 24 pens, one eighth are green, 25\% are red and the rest are blue.

What fraction of the pens is blue?

Answer: (3)
18. (a) Jake hangs a peg basket on a washing line.

Find the size of one of the shaded angles in the diagram above, if both are the same size.

Answer:° (2)

(b) The diagram below shows two straight lines.

Find the sizes of the angles marked a, b and c.

Answer: $a =$°

Answer: $b =$°

Answer: $c =$° (3)
19. Sarah measured the temperature of a beaker of liquid every 10 minutes during a science experiment.

She plotted her results on the graph below.

(i) What was the lowest temperature of the beaker?

Answer: ……………………………….. °C (1)

(ii) At what time was the temperature of the beaker 15 °C?

Answer: ……………………………….. (1)

Sarah measured the temperature of the beaker again 4 hours and 30 minutes after the last reading on the graph.

(iii) At what time did she take this measurement?

Answer: ……………………………….. (1)
20. Farmer Jack and Farmer Giles each have a rectangular field.

Farmer Jack’s field has an area of 24 m^2. Its length is 8 m.

(i) Work out the width of Farmer Jack’s field.

Answer: $\ldots \ldots \ldots \ldots \text{m}$ (2)

(ii) Work out the perimeter of Farmer Jack’s field.

Answer: $\ldots \ldots \ldots \ldots \text{m}$ (2)

Farmer Giles’ field has a perimeter of 20 m. The width of Farmer Giles’ field is 4 m.

(iii) Work out the length of Farmer Giles’ field.

Answer: $\ldots \ldots \ldots \ldots \text{m}$ (2)

(iv) Work out the area of Farmer Giles’ field.

Answer: $\ldots \ldots \ldots \ldots \text{m}^2$ (1)
Farmer Josephine also has a rectangular field.

\[
\begin{array}{|c|c|}
\hline
x \text{ m} & \text{Farmer Josephine’s field} \\
\hline
y \text{ m} & \text{not to scale} \\
\hline
\end{array}
\]

The width of Farmer Josephine’s field is \(x\) m and the length is \(y\) m.
Farmer Josephine builds a fence along the perimeter of her field.

(v) If the total length of this fence is 30 m, write down two possible values of \(x\) and \(y\).

Answer: \(x = \ldots\ldots\ldots\ldots\ldots\) m and \(y = \ldots\ldots\ldots\ldots\ldots\) m

or \(x = \ldots\ldots\ldots\ldots\ldots\) m and \(y = \ldots\ldots\ldots\ldots\ldots\) m (2)

21. Sanjay is making purple paint.

\[\text{purple paint}
\text{mix 2 litres of red paint for every 3 litres of blue paint}\]

(i) If he uses 6 litres of red paint, how much blue paint should he use?

Answer: \(\ldots\ldots\ldots\ldots\ldots\) litres (1)

(ii) How much blue paint is needed to make 35 litres of purple paint?

Answer: \(\ldots\ldots\ldots\ldots\ldots\) litres (2)
22. (a) Annie and Bradley each think of a number.
 The difference between their numbers is 6
 The sum of their numbers is 20

 What are the two numbers?

 Answer: .. and .. (1)

(b) Alice thinks of a number.
 Alice calls her number a.

 Alice adds 7 to her number, and then doubles her answer.

 Write an expression, using a, to show what Alice does.

 Answer: .. (2)

(c) Jack thinks of a number.
 Jack calls his number n.

 Jack multiplies his number by 3, and then subtracts 5

 He gets the answer 16

 Use this information to write down an equation, and then solve it to find n.

 Answer: $n = ..$ (2)

(Total: 100 marks)