COMMON ENTRANCE EXAMINATION AT 11+ MATHEMATICS

Specimen Paper
(for first examination in Autumn 2016)

Please read this information before the examination starts.

- This examination is 60 minutes long.
- Please try all the questions.
- Write your answers on the dotted lines.
- All working should be written on the paper.
- Tracing paper may be used.
- Calculators are not allowed.
- Fraction answers should be given in their simplest form.

1. Write down the answers to these questions.
(You may work them out in your head.)
(i) $48+35$

Answer:

(ii) 613-123

Answer:

(iii) $28 \div 4$

Answer:
(iv) 2^{3}

Answer:
(v) twenty-five percent of eighty

Answer:

(vi) 6.3×100

Answer:
(vii) $398+297$

Answer:

(viii) 27×5
2. (a) Write down all the prime numbers between 10 and 20

Answer:

(b) Write down the first three multiples of 12

Answer:

(c) Write down all the factors of 16

Answer:

3. A box of 7 grapefruit costs $£ 3.29$
(i) What is the cost of one grapefruit? Give your answer in pence.

Answer: p

Patrick buys 2 boxes of grapefruit and pays with a £20 note.
(ii) How much change should he receive?

Answer: £
(2)
4. These thermometers show the temperatures inside and outside a window at $10 \mathrm{a} . \mathrm{m}$. one winter's day.
inside

outside

(i) How many degrees warmer was it inside than outside the window?

Answer:
${ }^{\circ} \mathrm{C}$

At 10 p.m., the temperature outside had fallen by $2^{\circ} \mathrm{C}$.
(ii) What was the temperature outside the window at 10 p.m.?

Answer: \qquad ${ }^{\circ} \mathrm{C}$
5. Fill in the boxes to make the following statements true.
(i) $8+4 \times \square=36$
(ii) $5 \times(4-\square)=15$
(iii) $10-(5+\square)=-3$
6. Shape \mathbf{P} is drawn on the centimetre-square grid below.

(i) Reflect shape \mathbf{P} in the dashed line.

Label the new shape \mathbf{Q}.
(ii) Translate shape $\mathbf{P} 3$ units right and 4 units up.

Label the new shape \mathbf{R}.
(iii) Work out the area of shape \mathbf{P}.

Give your answer with the correct units.
Answer:
7. (a) Write down the value of these Roman numerals.
(i) V

Answer:
(1)
(ii) M

Answer:
(b) Which year is written in Roman numerals as MMXVII?

Answer:
8. (a) Work out the following.
(i) $3579+1824$

Answer:
(ii) $3579-1824$

Answer:
(iii) 264×27

Answer:
(iv) $1595 \div 11$

Answer:
(b) Round 2089 to the nearest 100
9. Calculate the mean of these numbers.

$$
\begin{array}{lllll}
9 & 14 & 7 & 17 & 8
\end{array}
$$

10. Here is a list of fractions:

$\frac{3}{4}$	$\frac{5}{8}$	$\frac{15}{11}$	$\frac{8}{12}$	$\frac{4}{5}$

Choose from the list
(i) a fraction which is greater than 1

Answer:
(ii) a fraction equivalent to 80%

Answer:
(iii) a fraction equivalent to 0.75

Answer:
(iv) a fraction which is not in its simplest form

Answer:
11. A sunflower is 150 cm tall.

How tall will it be if its height increases by 10% ?

Answer: cm
12. Here are 5 number cards:

The cards can be put together to form numbers.
For example, the smallest number which could be made using 4 of the cards is:

(i) Using all 5 cards
(a) what is the largest possible even number?

Answer:
(b) what is the number which is closest to 80000 ?

Answer:
(ii) Use exactly 2 of the cards to make the smallest possible prime number.

Answer:
(iii) Arrange any 4 of the cards to show a sum below which will give the smallest possible answer.

13. Put these distances in order from smallest to largest.
27.8 km
2.087 km
2778m
2.708 km

Answer: \qquad smallest largest
14. (i) Draw accurately triangle $A B C$ where $A B=5.5 \mathrm{~cm}$, angle $A=45^{\circ}$ and angle $B=90^{\circ}$ (Point A is already drawn for you.)

A
(ii) Measure and write down the length of side $B C$.

Answer:
cm
(iii)

equilateral	isosceles	scalene	right-angled

Circle any appropriate words from the box above to describe triangle $A B C$.
Give reasons for your answer.
\qquad
\qquad
15. (i) Two identical rectangles are divided into 15 equal squares.
(a) Shade $\frac{3}{5}$ of this rectangle:

(b) Shade $\frac{2}{3}$ of this rectangle:

(c) Which is larger: $\frac{3}{5}$ or $\frac{2}{3}$.

Give a reason for your answer.
Answer:
because \qquad
\qquad
\qquad
(ii) Arrange these fractions in order from smallest to largest.
$1 \frac{1}{3}$
$\frac{2}{3}$
$\frac{4}{5}$
$\frac{13}{15}$ $\frac{3}{5}$

Answer: \qquad
\qquad
16. Work out
(i) $\frac{2}{3}-\frac{1}{6}$

Answer:

(ii) $\frac{2}{5} \times 3$

Write your answer as a mixed number.
(You may use the diagrams to help you.)

Answer:
17. In a box of 24 pens, one eighth are green, 25% are red and the rest are blue. What fraction of the pens is blue?

Answer:
18. (a) Jake hangs a peg basket on a washing line.

Find the size of one of the shaded angles in the diagram above, if both are the same size.

Answer: - (2)
(b) The diagram below shows two straight lines.

Find the sizes of the angles marked a, b and c.

not to
scale

Answer: $a=$ \qquad

Answer: $b=$ \qquad

Answer: $c=$
19. Sarah measured the temperature of a beaker of liquid every 10 minutes during a science experiment.

She plotted her results on the graph below.

(i) What was the lowest temperature of the beaker?

Answer: \qquad ${ }^{\circ} \mathrm{C}$
(ii) At what time was the temperature of the beaker $15^{\circ} \mathrm{C}$?

Answer:

Sarah measured the temperature of the beaker again 4 hours and 30 minutes after the last reading on the graph.
(iii) At what time did she take this measurement?
20. Farmer Jack and Farmer Giles each have a rectangular field.

width \begin{tabular}{c}

Farmer Jack's
field

8 m

scale to

scal
\end{tabular}

Farmer Jack's field has an area of $24 \mathrm{~m}^{2}$. Its length is 8 m .
(i) Work out the width of Farmer Jack's field.
\qquad m
(ii) Work out the perimeter of Farmer Jack's field.

Answer:
m

Farmer Giles' field has a perimeter of 20 m .
The width of Farmer Giles' field is 4 m .
(iii) Work out the length of Farmer Giles' field.

$4 \mathrm{~m} \underbrace{$| Farmer Giles' |
| :---: |
| field |}$_{\text {length }}$| not to |
| :--- |
| scale |

Answer:
m
(iv) Work out the area of Farmer Giles' field.

Farmer Josephine also has a rectangular field.

$x \mathrm{~m}$| Farmer Josephine's
 field |
| :---: |
| $y \mathrm{~m}$ |
| not to
 scale |

The width of Farmer Josephine's field is $x \mathrm{~m}$ and the length is $y \mathrm{~m}$.
Farmer Josephine builds a fence along the perimeter of her field.
(v) If the total length of this fence is 30 m , write down two possible values of x and y.

Answer: $x=$ \qquad m and $y=$ \qquad m
or $\quad x=$ \qquad m and $\mathrm{y}=$ \qquad m
21. Sanjay is making purple paint.

purple paint

mix 2 litres of red paint for every 3 litres of blue paint
(i) If he uses 6 litres of red paint, how much blue paint should he use?

Answer: \qquad litres
(ii) How much blue paint is needed to make 35 litres of purple paint?

Answer: \qquad litres
22. (a) Annie and Bradley each think of a number.

The difference between their numbers is 6
The sum of their numbers is 20
What are the two numbers?

Answer: \qquad and
(b) Alice thinks of a number.

Alice calls her number a.
Alice adds 7 to her number, and then doubles her answer.
Write an expression, using a, to show what Alice does.

Answer:
(2)
(c) Jack thinks of a number.

Jack calls his number n.
Jack multiplies his number by 3, and then subtracts 5
He gets the answer 16
Use this information to write down an equation, and then solve it to find n.

Answer: $n=$
(Total: 100 marks)

